Hydrological Signatures Based on Event Runoff
Coefficients in Rural Catchments of the Iberian Peninsula

Encarnacion V. Taguas,! Estela Nadal-Romero,? José L. Ayuso,* Javier Casali,® Patricio Cid,* Jorge Dafonte,”
Antonio Canatario-Duarte,® Carla S.S. Ferreira,” Rafael Giménez,® Juan V. Giraldez,*

Helena Gémez-Macpherson,® Jose A. Gémez,2 J. Carlos Gonzélez—HidaI%o,2 Noemi Lana-Renault,”

Ana Lucia,'° Luciano Mateos,® Rafael Pérez,! M. Luz Rodriguez-Blanco,* Susanne Schnabel,*?

M. Pilar Serrano-Muela,'® M. Mercedes Taboada-Castro,** M. Teresa Taboada-Castro,** and Ane Zabaleta'*

ABSTRACT: \
Hydrological signatures are indices that help to describe the behavior of catchments. These indices can also be used to transfer information from
gauged to ungauged catchments. In this study, different approaches were evaluated to determine volumetric runoff coefficients in 18 small/
medium experimental gauged catchments of the Iberian Peninsula and to fit runoff calculations based on precipitation data for gauged and
ungauged catchments. Using data derived from 1962 events, rainfall-runoff relationships were characterized and compared in order to evaluate
the various hydrological response patterns. Volumetric runoff coefficients and cumulative runoff and precipitation ratios of the events that generated
runoff (R..m) minimized the root mean square error. A linear fit for the estimation of R.,,, in ungauged catchments was based on mean annual pre-
cipitation, rates of infiltration, the fraction of forest-land use, and the catchment channel length. Despite high catchment heterogeneity, R.um resulted
in a suitable parameter to evaluate hydrological variability in rural gauged and ungauged catchments. In 50% of the catchments, the precipitation
accounted for less than 50% of the runoff variation. Annual precipitation, antecedent rainfall, and base flow did not have a high significance in
rainfall-runoff relationships, which illustrates the heterogeneity of hydrological responses. Our results highlight the need for signature characteriza-
tions of small/medium rural catchments because they are the sources of runoff and sediment discharge into rivers, and it is more economical

and efficient to take action to mitigate runoff in rural locations.
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U nderstanding hydrological responses to rainfall events at the

catchment scale is essential for developing policies that ad-
dress water resources conservation and to evaluate the risks linked
to a changing environment, changes in land use, urban development,
and engineering infrastructure (Chow et al., 1988; Knapp et al.,
1991; Mishra and Singh, 2003; Colin et al., 2011; Xing et al.,
2015). Hydrological spatiotemporal variability can be characterized
by one or more indices, such as statistical parameters of runoff or
catchment features and soft data, which define the catchment’s hy-
drological signature (Hrachowitz et al., 2013; Westerberg and

McMillan, 2013; Westerberg et al., 2016). Signatures are crucial
for characterizing the similarity of flow regimes between catchments
and for out-scaling information from monitored ones (Alcazar and
Palau, 2010; Belmar et al., 2011).

Classic methods in hydrology, such as the rational method (Chow
etal., 1988) or the Soil Conservation Service Curve Number (1956),
have parameterized basic rainfall-runoff relations through different
interpretations of the term “runoff coefficient” (R.). In general, R.
is associated with either (i) the ratio of the peak runoff rate to the
rainfall intensity during the concentration time in the catchment or
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(i1) the ratio of the total runoff to the total rainfall (Dhakal et al.,
2012), with the latter being the simplest integrator-indicator of the
catchment’s hydrological behavior (Colin et al., 2011; Xing et al.,
2015). The statistical distributions of R, and information derived
from their percentiles (mean, median, 10th percentile, 90th percen-
tile) are useful in interpreting variability of hydrological responses
(Mishra and Singh, 2003). However, these interpretations and their
applicability may differ depending on the temporal scale used. Lon-
ger timescales, such as monthly, seasonally, or annually, are gener-
ally used to design storage infrastructure such as dams (Knapp
etal., 1991, Taguas et al., 2015a), whereas shorter timescales (event,
subdaily, daily) are usually applied when analyzing floods, sediment
load patterns, or geomorphologic/land use variations (Heiser et al.,
2015; Duvert et al., 2012; Mateo Lézaro et al., 2016). Estimation
of runoff during individual storm events is not common, and so
limited data availability (Belmar et al., 2011) creates an important hydro-
logical research gap in our understanding of the main driving factors of R,
(Dhakal et al., 2012; Li et al., 2015; Bennett et al. 2016).

In the Iberian Peninsula (IP), human activities such as agricul-
ture and urbanization can increase runoff coefficients and/or water
demands, leading to a rise in the frequency and impact of periodic
floods and droughts. Consequently, land-use changes may create
higher vulnerability in the management of water resources (Belmar
et al., 2011). Numerous studies describe the possible alterations of
runoff regimes (e.g., see Batalla et al., 2004; Magdaleno and
Fernandez, 2011; Belmar et al., 2013; Wang et al., 2017). However,
comparative analyses at the event scale and in medium and small
catchments are less common, despite the fact that these catchments
are usually located in the headwaters of larger catchments. Small
and medium catchments are also sites for implementing simple
and inexpensive water conservation measures (Lana-Renault et al.,
2011, 2014; Nadal-Romero et al., 2016). The aim of this work
was to evaluate hydrological signatures of IP rural experimental
catchments at the event scale based on rainfall-runoff relationships
and volumetric runoff coefficients. Event-scale rainfall-runoff datasets
from 18 rural small/medium catchments were studied. The specific
objectives were to (i) explore different signatures to determine
representative volumetric runoff coefficients at the event scale
and (ii) describe hydrological patterns of the catchments through
their physical features (topography, soil, and land use), runoff
coefficients, and rainfall-runoff relationships.

MATERIALS AND METHODS

Study Sites and Data Series

The IP is located in southwestern Europe. The peninsula has a sur-
face area of 583,832 km?, and its geographical limits include main-
land Spain and Portugal, Andorra, Gibraltar, and the southernmost
edge of France. The highest elevation is the Mulhacén peak, at
3,482 m above sea level. The IP environmental contrasts are the
consequence of Atlantic Ocean westerly winds, the warming influ-
ence of easterly winds from the Mediterranean Sea, and the distribu-
tion of the main mountain ranges, oriented east-west, which divide
the peninsula into three distinct large climatic areas: (i) the north
coast; (ii) the midwestern and mideastern regions, reaching down to the
south coast; and (iii) the Mediterranean coast (Pefia et al., 2016;
Fig.1A). The large midwestern region is subdivided into the North and
South Plateau with elevations of more than 400 m above sea level. The
topography strongly influences the distribution of climatic variables
such as rainfall, temperature, and temperature gradients. Mean annual
rainfall ranges from less than 300 mm in the southeast area
(Mediterranean coast) to more than 1,200 mm, and up to 2,000
mm, in the west and north of the peninsula (Fig. 1B). The geology
of the IP is the product of a long geological history from
Proterozoic times to the present, which produced the complexity
of its soils that were generated from igneous, metamorphic, and
sedimentary rocks (MAGRAMA, 2016).
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Rainfall and runoff events recorded from 1996 to 2014 in 18 small
rural experimental catchments (n = 1962) were analyzed to evaluate
their runoff coefficients and rainfall-runoff relationships (Fig. 1;
Tables 1 and 2). Table 1 describes the following attributes of
the catchments: drainage area (A44; ha); average annual rainfall
(P; mm); average elevation from the digital elevation models of
the catchments (H; m); channel length (L; m); channel slope (Sl
m-m ); soil type; dominant textural class; infiltration rate identified
from categories A, B, C, and D of the Curve Number method (Soil
Conservation Service, 1956; Inf Vel; cm-h™'); and the surface
percentage of land uses, considering agricultural crop fraction
(ACF; %), agricultural orchard fraction (AOF; %), forest areas
fraction (FF; %), rangeland fraction (RF; %), urban areas fraction
(UF; %), and pastures fraction (PF; %). Drainage areas of the
study catchments ranged from 1.4 to 1,600 ha, and the mean
annual rainfall varied between 400 and 1,994 mm. Main land uses
were agricultural crops, orchards, forest areas, and rangelands
located at mean altitudes between 106 and 1,130 m above sea level.

Study periods and sample sizes in each catchment are presented in
Table 2, with a mean of 109 £ 90 events. In order to standardize the
analysis, the existence of base flow and the criteria considered for
the event definition were checked. Only six catchments did not pres-
ent base flow (Table 2), all of which, with the exception of Barranca
de los Pinos (¢ 1), were located in the midsouthern area. In the other
catchments, the base flow separation method of Eckhardt (2005)
was applied to quantify direct runoff of each hydrograph. The
definition of event was established in each catchment according to
size (44 and travel time), the hydrological response patterns, and
the main objectives of the studies. Identification of events (Table 2)
was based on runoff generation and intervals without rainfall pulses
of 1 h (three catchments), 2 h (three catchments), 6 h (seven
catchments), and 10 h (two catchments) and empirical evaluations
of hyetographs and hydrographs (three catchments).

Exploration of Representative Volumetric Runoff
Coefficients at the Event Scale

Analysis of volumetric runoff coefficients at the event
scale obtained from different methods

The cumulative runoff to rainfall ratios (R.) and statistics (mean, me-
dian, range, 10th percentile, 90th percentile, SD) for each study
catchment event were calculated in order to evaluate their basic attri-
butes (Table 3). In addition to the classic definition of R., runoff
coefficients following Hawkins’ graphical method (R._H; Dhakal
et al., 2012), Curve Numbers (CN) obtained from Table 9-1 in
USDA-NRCS (1997) for the characteristics of the study catchments
(soil, type of vegetation cover, land use/treatment, hydrological
condition), the “mean” soil moisture state (antecedent moisture
condition II), and the cumulative runoff to rainfall of the events
(Reum) Were considered to explore the most suitable approach for
calculating runoft through rainfall values. R._H is obtained from
the asymptotic exponential relationship between runoff coefficients
of each event (R.) and their corresponding rainfall values. This value
represents the runoff coefficient for high rainfall events producing
high soil moisture. The example in Fig. 2 shows a typical scatter
plot for Aixola (c_3) and an exponential fit with asymptote. In the
case of Curve Numbers of the USDA-NRCS methodology, the
runoff (Q; mm) is calculated with Eq. 1 through 4:

1000
S =254 —--10 1
( o ) 1)
I, =02-S
_ (P-0.28)° (2)
~ P+0.8S
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Basic Statistics of the Runoff Coefficients of the Events Derived From the Ratio of Runoff to Rainfall (R.) of the Study Catchments

Runoff Coefficients Catchment Sample Size Mean Median Min Max 10th Percentile 90th Percentile SD

c1 Barranca de los Pinos 13 0.11 0.09 0.03 0.26 0.04 0.20 0.07
c_2* ldanha-a-Nova 6 0.58 0.69 0.11 094 0.11 094 0.33
c3 Aixola 222 0.04 0.02 0.00 0.40 0.01 0.10 0.05
c 4 Latxaga 84 0.18 0.17 0.01 0.66 0.03 0.33 0.12
c.5 La Tejeria 106 0.17 0.16 0.00 0.73 0.01 0.38 0.15
c_6 Araguésl 39 0.08 0.04 0.00 0.83 0.00 021 0.14
c 7 Landrol 16 042 043 0.11 0.70 0.20 0.64 0.18
c_8* Abeleda 5 0.14 0.11 0.06 0.32 0.06 0.32 0.11
c9 La Conchuela 111 0.17 0.09 0.00 0.70 0.01 0.49 0.19
c_10 Setenil 121 0.18 0.15 0.00 0.64 0.02 0.39 0.15
c_11 Puente Genil 79 0.09 0.02 0.00 0.77 0.00 0.29 0.15
c 12 Arnés 96 0.12 0.09 0.00 0.43 0.02 0.26 0.10
c_13 La Parrilla 74 0.10 0.04 0.00 0.44 0.00 0.30 0.12
c_14 San Salvador 54 0.17 0.07 0.00 0.65 0.00 0.45 0.19
c_15 Parapufios 120 0.13 0.05 0.00 0.77 0.00 042 0.18
c_16 Corbeira 119 0.03 0.02 0.00 033 0.01 0.06 0.04
c_17 Araguas? 335 0.12 0.06 0.00 094 0.01 0.31 0.15
c_18 Casal das Hortas 145 0.07 0.05 0.00 0.99 0.01 0.14 0.10
Mean 108 0.14 0.10 0.01 0.62 0.02 0.32 0.13
SD 79 0.09 0.10 0.03 0.20 0.05 0.15 0.05
CV (%) 73 64.00 103.00 | 269.00 | 32.00 208.00 46.00 35.00
Min 13 0.03 0.02 0.00 0.26 0.00 0.06 0.04
Max 335 0.42 043 0.11 094 0.20 0.64 0.19

*Catchments ¢ 2 and c_ 8 were not considered for the global statistics because their sample size was less than 10.

CV, coefficient of variation; Min, minimum; Max, maximum.

IfP > I, (3)

0=0 IfP>1, (4)

where S is the potential maximum retention (mm), defined by the
dimensionless parameter CN (Eq. 2); /, is the initial abstraction
(mm) consisting mainly of interception, infiltration, and surface

0.45
0.40 *
0.35 -
0.30 - ®
0.25 -
0.20 - ¢ o
0.15 - > ¢ *
0.10 -
0.05 -
0.0

Runoff coefficients
{(mm/mm)

0 2I0 40 60 80
Precipitation (mm)
FICSIR=2 Fxample of the calculation of R._H using Aixola (c_3)

data. An exponential relationship was fitted to evaluate the runoff coefficient
from the observed asymptotic tendency between R. and precipitation.

100
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depression storage during early parts of the storm, and P is the event
rainfall (mm).

The performance of different runoff coefficient indices to calcu-
late event runoff through rainfall was checked. The root mean square
errors (RMSE) of the observed and estimated runoff when the indi-
ces were multiplied by the rainfall of each event were compared, as
well as their correlation coefficients (7). These analyses were only
applied on the catchments with a data series of n > 10 events; catch-
ments 2 and 8 were therefore discarded.

Prediction of representative runoff coefficients through
multiple linear regression

After evaluating the most suitable index for gauged catchments, a
multiple linear regression (MLR) was employed to relate the
main physical features of the catchments (Table 1) with the
representative value of runoff coefficient. This was done in order
to find a fit that could be used in ungauged catchments. The
coefficients for the significant variables and P-level of significance
were calculated, and the final fit was tested through the F test, the
RMSE of the observed and predicted values, and the coefficients
of determination R? and adjusted R? (adj. R?, which considers
the number of degrees of freedom in the analysis). These
calculations were carried out using Statistica 8 software (Stat
Soft Inc., 2008).

© 2017 Wolters Kluwer Health, Inc. All rights reserved.
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Hydrological Patterns and Environmental Features in the
Study Catchments

Event rainfall-runoff scatterplots were evaluated for each catchment,
as well as the regression coefficients and R of their corresponding
fits. The different types of fits were classified according to observed
trends of the calculated regression coefficients (parameters a and b)
and of R? (group of catchments where the rainfall event accounts for
>50% of the runoff variance, 0.50 < R, and catchments where the
rainfall event accounts for <50% of the runoff variance,
0.50 > R?). In addition, the effects of the antecedent soil moisture
on the runoff response were studied through analysis of the accumu-
lated previous rainfall (APR) on the rainfall-runoff relationships.
Consequently, APR was added as a factor to the MLR (Q = a*
P + b*APR + c) to evaluate previous rainfall contribution to the
R* and its significance. With the exception of five catchments
(c 4,c 5 ¢ 6,c 14, and c_17), where the previous rainfall period
was 7, 15, and/or 21 days, the number of days prior to the event was
10. When different intervals of APR were available, the fit was
tested with each of them.

Finally, a principal component analysis (PCA) was used in order
to explore the influence of the physical attributes of the catchments
on the type of linear fit and the influence of base flow. The aim of
this methodology was to isolate the catchments by means of com-
mon linearly grouped attributes (Malinowski, 1991). In PCA, the
initial variable matrix is changed to noncorrelated synthetic variables
called principal components in order to concentrate the analysis on
the variables that contribute to the most variance. On the principal
axes, the catchment coordinates are the result of contributions of
the variance of each studied variable (feature) to the axis. A main
axis represents more or less information about a variable according
to the value of the principal component, which is equivalent to its de-
gree of correlation. A set of 16 catchments with 12 variables/
attributes {X(w))}: 44 (ha), P (mm), H (m), Sl (m'm "), Inf_ Vel
(em-h™"), ACF (%), AOF(%), FF(%), RF (%), UF (%), PF(%),
and R, were considered. The following steps were taken:
(1) the correlation matrix between variables was calculated; (2) the
correlations matrix diagonal was set up, and the eigenvalues and ei-
genvectors for the space change obtained; (3) the projections of in-
dividual cases (catchments) on the new axis were calculated;
(4) the projection of the variables on the main plane was also calcu-
lated to determine their contribution to the formation of each axis;
(5) the quality of the representation of the variables and individuals
was tested (distances of the projections to plane) to verify the quality
of the representation in the principal plane These steps were carried
out using Statistica 8 software (Stat Soft Inc., 2008).

RESULTS AND DISCUSSION

Representative Volumetric Runoff Coefficients at the
Event Scale

Basic statistics and preliminary analysis

Table 3 presents the mean, median, minimum, maximum, SD, and
10th and 90th percentiles of R, in the catchments. Catchments ¢_2
and c_8 were considered unsuitable for calculating the global statis-
tics because they each had less than 10 events. The mean R, varied
between 0.03 (Corbeira, ¢_16) and 0.42 (Landrol, ¢_7) with an
average of 0.14 + 0.13. Landrol (c_7) is the catchment with the
highest annual rainfall (nearly 2,000 mm). Although it contains
other land uses, rangelands dominate ¢ _7, whereas Aixola (c_3)
is a forest catchment with steeper slopes and a mean annual rain-
fall of 1,440 mm (Table 1). Corbeira (c_16) and Casal das Hortas
(c_18) also showed values less than 0.14 (0.03 and 0.07,
respectively). Both catchments were characterized by smoother
topography, and the fraction of forested area was close to 70%.
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However, they are quite distinct in terms of 44 size (1,600 and
150 ha, respectively) and soil types (Umbrisol-Cambisol and
Regosol-Fluvisols, respectively). Analysis of the medians show
only five catchments (c_2 was excluded) with a central value of
their distribution larger than 0.10, which illustrates that under dry
conditions most expected runoff coefficients are less than 10%. In
11 of the catchments, the 90th percentiles of R. were greater than
0.30, with a maximum of 0.64 in Landrol (c_7) and a minimum
0f 0.06 in Corbeira (c_16), which is the largest catchment.

Norbiato et al. (2009), found a similar range of volumetric run-
off coefficients (between 0.04 and 0.48) and an SD (0.13) close to
that of the present study in 14 forest and rangeland catchments in
the Italian Alps. However, it was significant how the R, mean of
the catchments was notably greater (0.28) than in this study
(0.14). Dhakal et al. (2012) observed wider variation intervals
for a group of 90 developed and undeveloped catchments in Texas.
In fact, R, means of these catchments varied between 0.10 and
0.67, whereas the R, medians ranged between 0.06 and 0.76. The in-
fluence of developed areas may explain, among other environmental
aspects, the notable differences highlighted by the authors to explain
R, variance.

Comparison of indices for gauged catchments

Table 4 presents a summary of the analysis used to compare RMSE
values of runoff obtained when different runoff coefficient indices
are considered. The numeric values of the runoff coefficients consid-
ered and the RMSE derived from the observed and calculated runoff
are shown in Table 4. In addition, the correlation coefficients be-
tween observed and calculated runoft and their significance are pre-
sented in the columns marked (1) and (2). For R._H, R._med, Ry,
and R._mean, very close values of 7 were obtained, and they are pre-
sented in column (1), whereas column (2) indicates » values for the
analysis with CN.

For all the catchments, the most suitable indices that mini-
mized RMSE were R._H and R, (Table 4), with the exception
of Landrol (c¢_7), where CN was the parameter that optimized
the error. Evidently, the CN are not derived from the data series,
and these results could be expected (Hjemfelt (1991). Only
R._H presented clearly better results than R, in Aixola (c_3),
whereas in the other catchments both values were very close, or
Rcum provided the best performance. Both indices were strongly
correlated (= 0.93, P < 0.05; Fig. 3); however, R, has the clear
advantage of being calculated directly from the data series without
graphical analysis. In fact, it is worth noting that the R, index
provided a good performance for a heterogeneous group of
catchments, and it is easy to calculate in gauged catchments.

The coefficients of correlation calculated for the best fits were
greater than 0.60 in all catchments with the exception of Parapufios
(c_15; r=0.55; Table 4). Note that R._median, usually considered
as a reference statistic to select the representative CN of a site
(Soil Conservation Service, 1956), showed a weak correlation
(r = 0.17) with the CN values. R._median provided minimum or
close to the minimum RMSE for Arnas (¢_12) and Casal das Hortas
(c_18) only, whereas CN and R._mean presented the maximum
RMSE (Table 4). The range of CN (Table 4) presented an
average of 73 and a variation range between 54 and 84. The
worldwide success of the CN methodology in calculating storm
runoff is that it is well supported by empirical data (Mishra and
Singh, 2003). However, after checking its suitability in olive orchard
catchments in Spain, Taguas et al. (2015b) suggested reevaluating
its application with empirical data. Dhakal et al. (2012) compared
the indices of volumetric runoff coefficients obtained from
different approaches for catchments in Texas and underlined the
lack of correlation among them, which supports the need for
studies to check the information in design manuals with badly
justified hydrological parameterizations.
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Statistics Derived From the Fits to Predict Runoff (Q) From Rainfall (P) as Q = R...P for Each Event in the Studied Catchments
Code/Catchment Statistic R. H R._Med Reum R._Mean r(1)/P CN r(2/pP
1 R. 0.19 0.09 0.13 0.11 092 68 -035
Barranca de los Pinos RMSE 1.44 179 1.46 167 0.00 590 0.24
3 R. 0.14 0.02 0.09 0.04 0.86 74 0.77
Aixola RMSE 1.84 2.79 2.13 258 0.00 246 0.00
4 R. 0.2 0.17 0.2 0.18 069 84 0.76
Labaga RMSE 6.66 699 6.64 6.81 0.00 6.76 0.00
5 R. 0.11 0.16 0.09 0.17 0.64 84 065
La Tejeria RMSE 2.59 285 2.63 303 0.00 5.68 0.0
6 R. 0.12 0.04 0.1 0.08 0.60 79 053
Araguésl RMSE 2.7 311 2.68 275 0.0 5.85 0.0
7 R.- Value 066 043 0.49 042 097 73 097
Landrol RMSE 18 20.09 16.20 21.06 0.00 15.78 0.00
9 R. 0.3 0.09 0.24 0.17 073 82 072
La Conchuela RMSE 7.52 99 7.7 8.48 0.0 9.04 0.00
10 R. 0.28 0.15 0.2 0.18 0.76 73 071
Seteni RMSE 4.83 496 447 462 0.00 641 0.00
11 R. 0.34 0.02 0.14 0.09 062 57 047
Puente Genil RMSE 5.76 587 48 5.15 0.00 6.99 0.0
12 R. 0.08 0.08 0.13 0.12 071 54 053
Amés RMSE 3.24 324 278 084 0.00 558 0.00
13 R. 0.26 0.04 0.17 0.1 0.85 77 0.88
La Parrila RMSE 7.11 11.92 7.39 9.43 0.00 11.01 0.00
14 R. 0.34 007 0.21 0.17 0.64 73 067
San Salvador RMSE 8.67 10.18 7.93 833 0.00 8.24 0.00
15 R. 0.2 005 0.15 0.13 0.55 72 045
Parapuifios RMSE 434 5.06 437 4.44 0.00 461 0.00
16 R. 0.05 0.02 0.05 0.12 0.66 72 063
Corbeira RMSE 2.44 2.75 239 282 0.00 651 0.00
17 R. 0.26 0.06 0.15 0.12 08 79 072
Araguds2 RMSE 2.48 3.29 2.44 2.7 0.00 360 0.00
18 R. 0.05 005 0.06 007 061 76 -033
Casal das Hortas RMSE 0.03 0.03 0.03 003 0.00 1.84 0.00

R.H was obtained following the graphical method of Hawkins (1993); CN are the values of curve number selected for the catchments (Table 9-1; NCRS
[2014]) ; R.—med and R._mean are the median and mean of the histograms of R, (ratio runoff/rainfall of an event). r of Observed-predicted runoff values con-
sidering R._H, R._med_R.,n,, and R_mean; (2) » of observed-predicted runoff values considering CN. Highlighted in bold are the minimum errors for each case.

P,significance level of the fit; r,correlation coefficient between observed and calculated runoff values coefficients.

Prediction of runoff coefficients for ungauged catchments
Table 5 shows the results of the prediction of R, with multilinear
regression with the best combination of catchment attributes
(Table 1). The model (Reum = by + b;*P + by*Inf Vel + b3*
FF + b,*L) depended on P (mm), Inf Vel (cm), FF (%), and L
(m), which illustrates the expected influence of climate, soil type,
land cover, and size of catchment. Dependence on similar
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catchment features were described by Norbiato et al. (2009) for
event runoff coefficients observed in 14 catchments in the eastern
Italian Alps. Despite catchment heterogeneity, the values of
significance for the F test (0.0006) and adj. R (0.73) indicate that
most of the variance was satisfactorily explained by the model.
The RMSE was 0.05. Significance of the coefficients was less than
0.10, with the exception of the intercept. Figure 4 presents the
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Correlation scatterplots of different indices to calculate
event runoff in the study catchments: (A) correlations between R..m

and R._H, R._mean, and R_med; B) correlations between CN and R.,m,
R._H, R._mean, and R_med. R._H was obtained following the
graphical method of Hawkins (1993) (Fig. 2); CN are the values of
Curve Number selected for the catchments (Table 9-1; NCRS [2014]);
R._med and R._mean are the median and mean statistics of the
histograms of R, (Table 3).

scatterplot of the observed and predicted R..,, values. It is worth
noting how catchments Aixola (c_3) and Tejeria (c_5) presented
the maximum deviation, and their R, values were notably
overestimated. In contrast, the values from San Salvador (c_14)
were underestimated (Fig. 4).

The quality of the fittings is comparable with those in
D’Ambrosio et al. (2017), who calculated maximum annual flow
in terms of significant variables in temporary river systems in Italy.
Moreover, similar weaknesses were noted by D’Ambrosio et al.
(2017) in relation to the reduced number of catchments and attri-
butes analyzed, which must also be recognized in our study. How-
ever, we would like to highlight that (i) abundant literature exists

WA\ =M SRS Summary of the Best Model Derived From Multiple Linear Regres-
sion (Reym = b0 + b1* P+ b2* Inf_Vel + b3*FF + b4* L), Showing the Values off
the Coefficients (b) Modifying Each Variable

Variables Coefficients () [ RMSE P

Intercept 0.049554 0.03684 | 0.20569
Mean annual rainfall (mm; P) 0.000258 41E-05 | 6.2E-05
Rate of infiltration (cm/h; Inf_Vel) -0.085820 0.04436 | 0.07914
Forest fraction (%; FF) -0.001560 0.0004 | 0.00254
Channel length (m; L) -0.000016 5E-06 | 0.01268

Multiple R: 0.8967, F = 11.62866
R?.0.8041, df=4, 11

No. cases: 16, adj. R%: 0.7328, P =0.000610
RMSE of the estimate: 0.05320

The F value, df (degrees of freedom), and resulting P (significance) are the
statistics of F'test to evaluate the relationships between the dependent variable
and the set in independent variables.

Adj. R?, adjusted coefficient of determination taking into consideration the
sample size and the number of predictor variables; multiple R, coefficient of
correlation among the observed and predicted values of R.,,,; P, significance
of the fit; R, coefficients of determination; RMSE, root mean square error of
the observed and predicted values.

Iberian Peninsula Hydrological Signatures

showing daily, monthly, and annual stream flows (mainly quantiles
and statistical moments) and their regionalization for large gauged
and ungauged catchments (Sanborn and Bledsoe, 2006; Alcazar
and Palau, 2010; Belmar et al., 2013), but there is a notable gap at
the event scale and for small catchments (Merz et al., 2006; Norbiato
et al., 2009), and (ii) for a small group of simple features of the
catchments, representative runoff coefficients could easily be
estimated. In order to improve the statistical performance, more
effort should be made to contrast the results by adding new
catchments in different climatological areas of the IP, as well as
by enlarging the data series.

Hydrological Patterns and Environmental Features

Table 6 and Figs. 5 and 6 show the results of the classification anal-
ysis to evaluate hydrological patterns in the study catchments. De-
rived from the evaluation of R*> on the P-Q fits, in 50% of the
catchments, rainfall accounted for less than 50% of the runoff varia-
tion. Figures SA of Parapuiios (c_15) and 5b of Landro 1 (c_7)
show representative rainfall-runoff scatterplots, which present the
different trends. The range of variation of R* was between 0.30
(Parapufios, ¢ 15) and 0.94 (Landrol, c¢ 7). The term “a”
(Table 6) varied between 0.07 (Casal das Hortas, c_18) and 0.65
(Landrol, ¢ 7), whereas “b” did so between —12.78 (Landrol,
¢ 7) and —0.02 (Casal das Hortas, ¢ 18). Although R.., was
slightly less than the term “a” (approximately 30%), both indices
were very well correlated with R, (# = 0.95, P = 0.000). For
50% of the catchments, “a” was between 0.20 and 0.30, and this is
where the best fits were concentrated, with the exception of
Landrol (c_7) and La Conchuela (c_9).

As far as the effects of antecedent precipitation are concerned,
APR did not improve the coefficients of determination of the fits
when this factor was included in the MLR model (Table 6). Only
in Casal das Hortas (c_18) was the increase in adj. R* substantial
(from 0.38 to 0.51). In addition, APR presented a significance
P > 0.05 in six catchments (38%; Table 6): Aixola (c_3), Latxaga
(c_4), Araguasl (c_6), Puente Genil (c_11), San Salvador (c¢_14),
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Scatterplot of observed and predicted R.m values
derived from the fit Reym = bo + b1 * P+ bo* Inf_Vel + bs*FF + by* L,
where b denotes the coefficients of the fit, P is the mean annual
precipitation (mm), Inf_Vel is the rate of infiltration (cm/h), FF is the
percentage of FF, and L is the channel length (m). The catchments
with maximum deviation have been marked. The dashed lines indicate
the limits for 95% of confidence interval.
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LA\ =M =N Models to Predict Runoff (Q) From Rainfall (P; Q = a*P + b) or From P and an Antecedent Soil Moisture Indicator (APR; Q =a*P + b*APR + ¢)

Name Q@=a*P+h a b R? APR Adj. R? Significance
Barranca de los Pinos c1 0.262 -1.988 0.85 P10 0.88 <0.05
Aixola c_3 0.224 -1.233 0.74 P10 0.74 >0.05
Latxaga c 4 0.329 -3.501 0.48 P7/P21 0.49 >0.05
La Tejerfa c5 0.147 -1.106 041 P7/P21 0.45 <0.05
Araguésl c b6 0.106 -0.154 0.36 P7/P15 0.37 >0.05
Landrol c_7 0.649 -12.780 094 P10 0.96 <0.05
La Conchuela c 9 0.337 -2.135 0.53 P10 0.54 <0.05
Setenil c_10 0.250 -1.317 0.58 P10 0.60 <0.05
Puente Genil c_11 0.293 -2.789 0.38 P10 0.38 >0.05
Arnas c_12 0.212 -1.566 0.50 P10 0.53 <0.05
La Parrilla c_13 0.292 -4.562 0.72 P10 0.74 <0.05
San Salvador c_14 0.389 -6.132 041 P15 041 >0.05
Parapufos c_15 0.237 -1.244 0.30 P10 031 <0.05
Corbeira c_16 0.088 -0.887 0.43 P10 0.43 >0.05
Araguas?2 c_17 0.240 -0.906 0.64 P7/P15 0.65 <0.05
Casal das Hortas c_18 0.068 -0.023 0.38 P10 0.51 <0.05
Mean 0.258 -2.645 0.54 — 0.56 —
SD 0.139 3.146 0.19 — 0.19 —
CV (%) 53.816 -118.931 34.69 — 33.39 —
Min 0.068 -12.780 0.30 — 0.31 —
Max 0.649 -0.023 094 — 0.96 —

APR is estimated based on accumulated rainfall in the previous 7 (P7), 10 (P10), 15 (P15), or 21 (P21) days. For the all the fits with the simple linear re-

gression model, P was significant at P < 0.05.

a and b, the slopes and the intercepts of the fits, respectively; Adj R variance explained by the MLR considering APR; CV;, coefficient of variation; Min,

minimum; Max, maximum; P, rainfall of the event; Q,runoff of the event; R?, coefficient of determination.
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@ Representative patterns of rainfall-runoff relationships found in the study catchments: (A) fits with determination coefficient (R?) >0.50;

(B) fits with

< 0.50 (P = precipitation; Q = runoff; the number 11 denotes the code for catchment 11 for Puente Genil, and 13 for La Parrilla).
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Representation of the catchments on the plane formed by
the first and fourth principal axes: (A) catchments with an R> > 0.50

in the rainfall-runoff fit (type A) and R» < 0.50 (type B) have been marked;
(B) catchments with flow base and without flow base have been
marked. Max indicates the location of the maximum values for that
particular attribute; P, average annual rainfall; H, average elevation from
the digital elevation models of the catchments; L, channel length; SI,
channel slope; Inf_Vel, infiltration rate identified from categories

A, B, C, and D of the CN method (Soil Conservation Service, 1956).

and Corbeira (c_16). With the exception of Corbeira (c_16), the
channel mean slopes of those catchments were larger than 7%,
which may indicate steeper slopes and shallower soils and a reduced
influence of these variables on runoff generation. It is worth noting
that the patterns of runoff generation must be controlled by local
physical factors (different from APR) whose spatial variability
determines the response in the outlet. Schnabel and Gdémez-
Gutiérrez (2013) mentioned the importance of soil moisture in the
valley bottoms as a key factor to understand the hydrological
behavior of Parapufos (c_15). The different response patterns of
the catchments such as Araguasl (c_6) and Araguas2 (c_17) also
illustrate the need for specific analysis of the catchments to
describe their hydrological behaviour.

Table 7 and Fig. 6 summarize the result of the PCA. The eigen-
values and the percentage of explained variance for each principal
axis were as follows: for axis 1, 2.70 and 22.48%; for axis 2, 2.25
and 18.73%; for axis 3, 1.82 and 15.16%; for axis 4, 1.57 and
13.04%; for axis 5, 1.31 and 10.89%; and for axis 6, 1.15 and
9.59%, whereas for the rest of the axes the explained variance was
less than 5%. The fourth main axis was correlated with R, (projec-
tion on PA4 = —0.80) and P (PA4 = —0.75), and the variance ex-
plained by PA4 was not much lower than the variance explained
by the second main axis. If the plane formed by the principal axes
1 and 4 is considered, the cumulative variance adds up to 36%. P,
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H, Inf Vel, AOF, RF, and PF were acceptably represented on the
first axis (projection on PA1 > 0.55; Table 7), whereas P and R.um
were on the fourth axis. This is shown in Fig. 6, where the influence
of the sign of the projection on the distribution of the catchments
(cases) on the principal plane is also indicated. In Fig. 6A, the great
heterogeneity of the eight catchments with acceptable linear rainfall-
runoff fits can be observed (R* > 0.50). For example, five catch-
ments (Araguds2, Barranca, Arnas, Landrol, and Aixola; ¢ 17,
c 1,c 12,c 7, c 3, respectively) were characterized by their land
use other than agriculture, the highest value of the annual rainfall
and mean altitude, and the high infiltration velocities associated with
sandy and loamy textures. On the other hand, despite their agricul-
tural land use and lower values of annual rainfall and altitude, La
Parrilla, Setenil, and Conchuela also showed a strong sensitivity to
the event rainfall (R* > 0.50, Fig. 6A; Table 1). The other group of
catchments was characterized by four agriculture and pasture land
uses (Parapufios, Puente Genil, La Tejeria, Latxaga; ¢ 15, ¢ 11,
¢ 5, c_4, respectively), and another four were forest/rangeland
catchments with a low variability (with the exception of Landrol,
¢_7) in terms of annual rainfall range and Ry,

Figure 6B illustrates the lack of correlation between R, and the
presence of base flow in the catchments. In other words, a higher
Reum (which can be found in the third and the fourth quadrants)
did not mean a greater frequency of catchments with base flow. Fi-
nally, the influence of 44 was not significant to explain the variance,
and it made a negligible contribution toward the formation of axes
(Table 7). The event criteria shown in Table 2 did not explain any
tendency of the catchments derived from Fig. 6. Finally, another
point to underline, which was not included in PCA but can be
described if the distribution of catchments is considered, is the
low effect of geographical proximity in determining similar
hydrological features. This fact can be particularly evident in
Araguasl, Araguas2, and San Salvador (Figs. 1 and 6), and it
might illustrate the complex hydrological response of the
catchments. These findings contrast with analyses carried out
in other more humid areas or in the IP. For instance, Mathias et al.
(2016) described the nonlinearity of rainfall-runoff in catchments
in the United Kingdom associated with more arid catchments in
terms of base flow, low rainfall, and evaporative demand. Belmar
et al. (2011), referring to the analysis of 390 sections of the Segura
River Basin in Spain, described four hydrological categories (large
rivers, perennial stable streams, perennial seasonal streams, and
intermittent and ephemeral streams) with a high spatial correlation
in the response pattern of monthly and annual flow.

Although APR must have influenced the runoff generation, it has
a low contribution to explain the runoff at the event and catchment
scales. On the other hand, neither the annual rainfall nor the presence
of base flow had a clear influence on rainfall-runoff relationships,
probably as a result of very different environmental and experimen-
tal conditions in the aforementioned cases. Apparently, higher infil-
tration rates and less forested area may involve less memory or
closer initial soil moisture conditions and therefore more constant
(linear) response patterns to rainfall. There is a persistent demand
for studies that use hydrological indices/signatures to establish
criteria to group hydrological regimes in order to identify, among
other factors, ecological aspects and the behavior of rivers (Baeza-
Sanz and Garcia de Jalon, 2005; Poff et al., 2010; D’Ambrosio
et al., 2017). Despite the heterogeneity of the catchments, rainfall-
runoff patterns at the event scale have allowed us to group the
catchments into a small number of different response types.
Management of small rural catchments is essential because their
contribution to rivers in terms of sediment (and water quality)
may lead to serious risk of floods, as well as damage to
ecological systems. Thus, the characterization of flow patterns of
small rural catchments (or signatures) in terms of magnitude and
susceptibility of response can provide guidelines for planning and
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Projections/Contribution Degree of the Study Variables on the Principal Axes (PA)

PA1 PA 2 PA3 PA4 PAS PAG PA7 PA 8 PA 9 PA10 PA11 PA.12
Aq 033 -0.47 0.53 -0.09 -0.30 -0.45 0.16 0.15 -0.06 -0.17 -0.05 0.00
P 0.58 -0.25 0.00 -0.75 -0.03 -0.02 -0.14 -0.01 0.03 -0.02 0.15 0.00
H 0.70 0.25 -0.54 0.14 -0.04 0.09 -0.23 0.11 -0.25 -0.04 -0.02 0.00
Inf_Vel 0.55 0.44 0.45 0.23 0.20 0.15 -0.30 0.27 0.18 -0.04 -0.03 0.00
ACF -0.52 -0.02 0.02 -0.06 -0.76 0.32 -0.21 0.02 0.02 -0.04 0.00 0.00
AOF —0.55 0.31 -0.07 0.00 0.49 -0.57 -0.15 0.02 -0.03 -0.06 0.04 0.00
FF 0.37 -0.82 -0.24 -0.10 0.25 0.06 0.05 0.20 0.04 0.12 -0.06 0.00
RF 0.55 0.64 0.18 0.07 0.04 0.28 0.40 -0.08 -0.02 -0.03 0.03 0.00
UF -0.10 -0.49 0.37 -0.02 0.49 0.50 -0.14 -0.29 -0.06 -0.12 -0.03 0.00
PF 0.62 -0.08 0.26 0.35 -0.23 -0.39 -0.18 -041 0.02 0.10 -0.01 0.00
S 0.22 -0.26 -0.82 0.36 -0.04 -0.04 0.06 -0.12 0.17 -0.16 0.02 0.00
Reum 0.12 0.47 -0.25 -0.80 0.01 -0.09 -0.02 -0.17 0.06 -0.03 -0.13 0.00

Variables in bold are those with principal components >0.55 for the principal axes 1 and 4 (see also Fig. 6).
H, average height; Inf Vel, infiltration velocity identified from categories A, B, C, and D of the CN method (SCS, 1956); P, average annual rainfall; PF,

pasture fraction; S, channel slope.

implementation of measures to deal with source areas of runoff and
sediment, which are eventually discharged into large rivers.

CONCLUSIONS

In a context of the lack of experimental measurement-based runoff
coefficients of small rural catchments in the IP, our results illustrate
an empirical method to determine the representative volumetric run-
off coefficient for gauged and ungauged catchments. The event rain-
fall accounted for more than 50% of the event runoff variance in
50% of the catchments. The catchments were highly heterogeneous
in terms of land use and location in the IP, and neither annual rainfall
nor base flow presence contributed significantly to explaining the
rainfall-runoff patterns. The previous rainfall had a variable and ir-
relevant influence on the runoff generation. A greater effort needs
to be made to describe and analyze small/medium rural catchments
because taking action at this scale can be more economical and effi-
cient than planning measures that are focused solely on the riparian
areas of large rivers.
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